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ON THE INSTABILITY OF A FULL NON-PARALLEL 
FLOW-KOVASZNAY FLOW 
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SUMMARY 

The local instability of a full non-parallel flow is investigated. The basic flow is a horizontal uniform flow 
about a vertical array of periodic bound eddies. This Bow was found by Kovasznay as an exact solution to 
the Navier-Stokes equations. The problem is formulated as an initial value problem with two sets of 
complete orthogonal functions. A new approach to the problem with semi-infinite domain is given 
computationally with a new modified rational Chebyshev function. The linear stability analysis of the 
Kovasznay flow is performed with respect to the odd-rational Chebyshev mode and the even-rational 
Chebyshev mode for the evolution of disturbances. While symmetrical vortex sheets appeared through the 
process of big eddies breaking into small eddies in the odd-rational Chebyshev mode, the von KarmBn 
vortex street phenomena is found in the even-rational Chebyshev mode. The mode corresponding to 
antisymmetric velocity perturbation is found to be far more unstable than symmetric disturbance. An 
organized structure is developed after the onset of instability. Several general characteristics of non-parallel 
flow stability are discussed. 
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1. INTRODUCTION 

A given flow, the stability of which is to be investigated, is called the basic flow or basic state. The 
basic flow can be classified into the following categories: (a) parallel flow v = ( U ( y ) ,  0,O); (b) nearly 
parallel flow v = (U(x ,  y), V ( x ,  y), 0), V ( x ,  y) 4 U ( x ,  y )  and a U/Bx 4 1; (c) full non-parallel flow 
v = ( U ( x ,  y ) ,  V(x ,  y ) ,  0) or v = ( U ( x ,  y, z),  V(x ,  y ,  z ) ,  W ( x ,  y, z ) )  in three dimensions. 

Methods of analysing the stability of parallel flows were formulated in the beginning of this 
century. Orr and Sommerfeld derived the celebrated equation that provides the basis of the linear 
stability theory of parallel flow motions. The assumption of parallel flows dramaticaly simplifies 
the problem mathematically. The theory of stability of parallel flows indeed has played a signifi- 
cant role in the process of understanding hydrodynamic stability phenomena and enriched the 
hydrodynamic stability theory itself. However, most external flows of practical interest are 
non-parallel, the parallel flow assumption is of questionable validity.' In order to understand the 
transition to turbulence beyond the parallel theory, insight can be reached with either non- 
parallelism or non-linearity.' While richness of non-linearity has been paid a lot of attention, the 
importance of non-parallelism is just gradually being realized. 

A fluid motion having a mean flow which varies both in the direction of the mean flow and in 
the direction perpendicular to it is defined as non-parallel flow. Its stability problem is called 
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non-parallel flow stability. There is a real need for studying stability of non-parallel flow in order 
to understand better the flow phenomena of practical interest. In the stability analysis of 
non-parallel flows, it is usually assumed that the flow is locally parallel in space. However, 
difficulties associated with this assumption were recognized by Tatsumi and Kakutami3 and 
Lanchon and Eckhaus4 among others. Efforts to rationalize the assumption with the asymptotic 
method of multiple scale can be found in the works of Bouthier,’ Ling and Reynolds,6 Gaster,’ 
Saric and Nayfeh,* Smith,’ Hall,”. Asrar and Nayfeh.12 The effects of non-parallel correction 
can be found in the works of Wakitani,I3 Gotoh et a1.,14 Chomaz et al.,” Karniadakis and 
Triantaflyllou16 and the reference list at the end. Energy stability analysis of non-parallel flow can 
be found in the works of Lin and T ~ b a k ” , ’ ~  and Coscia.lg 

The stability of full non-parallel flows suffers from some serious uncertainties associated with 
the approximate nature of the basic states of non-parallel flows. As pointed out by Drazin and 
Reid,20 in dealing with the stability of non-parallel flows, there are two major problems: the first is 
concerned with obtaining a suitably accurate description of the basic flow, while the other is 
concerned with obtaining approximations to the solution of the partial differential equations 
which govern the disturbance flow. In order to overcome the difficulty and concentrate on 
stability analysis, it is desirable to have some stability analyses of non-parallel flows which are 
exact solutions of the Navier-Stokes equations. Taylor2’ intuitively obtained an exact solution to 
the Navier-Stokes equations which represents a double array of vortices. Kovasznay” obtained 
an exact steady-flow solution in a similar manner by assuming that vorticity is proportional to 
stream function. The flow is periodic in one direction (which B e a ~ m o u t ~ ~  and Gotoh et a1.,14 

called spatially periodic flow in z-direction) and semi-infinite in another direction. Kovasznay 
suggested that the flow may be used to describe the flow downstream of a two-dimensional grid 
(we note that Prosperetti2‘ obtained a similar solution to describe the laminar flow at large 
distances from an infinite two-dimensional grid). This steady solution provides us with an 
opportunity to study the mechanism of the non-parallel flow stability. The results obtained will 
then be free from concern about the accuracy of the basic state. The basic flow is given in 
Section 2.1. The disturbance equations are given in Section 2.2. Stability analyses of normal mode 
approaches for non-parallel flow are discussed in Section 2.3. An initial value problem for the 
linear instability of the Kovasznay flow is formulated in Sections 3.1. and 3.2. The numerical 
method for the disturbance equation and self-consistency test are described in Section 3.3. The 
results and discussion are given in Section 4, and finally a conclusion in Section 5. 

2. STABILITY ANALYSIS 

2.1. Basic $ow 

The basic flow to be studied here is the Kovasznay flow, which is an exact solution of the 
Navier-Stokes equation and represents a full non-parallel flow. A streamline pattern of this flow 
is depicted in Figure 1 ,  where the length is normalized with the spatial period, d, of the periodic 
bound eddies. The flow far downstream from these eddies approaches a uniform stream of speed 
U .  The stream function normalized with Ud of the Kovasznay flow $ is given by 

@=Z-B sin(2nz) exp(Mx), (1) 

where (x, z )  are the Cartesian co-ordinates, B is a parameter which determines the size of the wake 
bubble and M is given by 

M =+(rW-J(R’+ 16~’ ) ) .  

where R = U d / v .  
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Figure 1. Basic flow: Kovasznay flow (R = 40, B = 1) 

Kovasznay suggested that the solution corresponding to the negative root of M above can be 
used to describe the wake flow in the region x > 0 behind a grid of wires with a uniform spacing 
d at x = 0. Note that the length of the wake, i.e. the distance between x = 0 and stagnation point, 
is given by 

1 
M (a,)' I=-ln ~ 

Since M <O, we must have 2nB> 1 for the existence of the closed wake shown in Figure 1. When 
B = 0, the flow is a uniform stream of speed U in the x-direction. Further physical interpretation 
of the flow can be found in Pro~peretti. '~ 

2.2. Disturbance equation 

Let the perturbed stream function $ be written as 

4=*+*, 

where *is the basic state stream function and is the stream function perturbation. Substituting 
the above into Navier-Stokes equation and neglecting non-linear terms, we have the disturbance 
equation which is the governing equation for the linear stability with the basic state given by 
equation (1) as 

(a t -  

2.3. Normal mode approach 

solution of the form 
The first and usual approach in stability analysis of parallel flow is to seek a disturbance 

$(x, z, t ) = q ( ~ ) e ' ( ~ ~ - " ' )  
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and solve the resulting problem for spatial eigenvalue k and temporal eigenvalue 0. In non- 
parallel case, it is well known that no spatial eigenvalues exist, so we assume the disturbance 
solution of the form 

$(x, z, t )=q(x,  z)A(t), A(t)=e“‘. (3) 
Gotoh et a l l 4  predicted much more difficulty with the above eigenvalue problem than the 
parallel case. Lagnado et dz5 circumvent the problem by seeking an alternating representation of 
the solution. In this section, I like to elaborate in more detail. 

Substituting (3) into the governing equation (2), we formulate the eigenvalue problem of 
Kovasznay flow using the spectral Galerkin method. It is found that when B = 0, at which flow is 
of parallel case, all real parts of the eigenvalues are negtive. Physically it is stable, as expected, 
since the flow is uniform. However, when B>O, at which flow is a non-parallel case (where our 
main interests are), it is found after extensive and careful study that there are no convergent 
eigenvalues. 

Kovasznay flow possesses two characteristics which prevent us from finding unique eigen- 
values. Computationally, the flow domain is semi-infinite (0 < x < 00). For a semi-infinite domain, 
referring to Grosch and Salwen’s work,Z6 Craik” mentioned that no eigenvalue exist for a simple 
one-dimensional wave equation for (0 < x < co). Theoretically, the characteristic of non-parallel- 
ism keeps us from finding the convergent eigenvalues. In study of the stability of a large gas 
bubble rising through liquid, of which basic state is a non-parallel flow, Batchelor’* showed that 
neither eigenmodes of disturbance whose amplitude vary exponentially with respect to time exist 
nor do spatial eigenmodes. Consequently, he turns his attention to analyse the evolution of 
a disturbance in arbitrary initial form. In studying the Rossby waves in a shear flow with critical 
level, TungZ9 resolved the dilemma of normal mode approach by solving an initial value problem. 
A similar approach can be found in the work of Carrier and C h a ~ ~ g . ~ ’  Lagnado et ~ 1 . ’ ~  claimed 
that the initial value problem is more general in the sense that the initial disturbance is left 
unspecified. Normal mode is a special form of the solution. If one observes the form of the 
solution more carefully, one finds that it is assumed that not only is the solution separatable, but 
also in a special form: an exponential growth or decay form. Due to the unbounded domain and 
non-parallelism of Kovasznay flow and our computation of eigenvalue approach, we conclude 
that no spatial and temporal eigenvalues exist for the flow. So we seek the solution in an initial 
value problem approach and study the evolution of the disturbances. 

3. FORMULATION O F  INITIAL VALUE PROBLEM APPROACH 

We are going to solve the disturbance equation (2) by using the spectral Galerkin method as an 
initial value problem. 

3.1. Fourier mode in z 

Note that the basic state is spatially periodic in z-direction, we seek the solution of (2) in the 
form of the Fourier mode in z-direction 

2nnz *+‘ 2(n - 1)nz 
I ’  

N +  1 

n= 1 I n = l  
$= F , ( t , x )  sin-+ 1 G,(t,x)cos (4) 

where F , ( t , x )  and G,(t,x) are unknown functions of t and x and il is the wavelength in the 
z-direction. A particular interest is the case I =  1, when the instability does not discriminate 
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against any particular bound eddy. It will be assumed that the disturbance does not enter the flow 
at x = 0, it vanishes at x = 00 (Reference 3 l), i.e. 

(u, w)=O at x=O and x = m .  

Thus, the instability is entirely due to the energy transfer from the basic state to the disturbance 
within the flow domain. (An approach with more challenging inflow/outflow boundary condition 
is on the way.) The boundary conditions corresponding to F,(t, x) and G,(t, x) will shortly be 
derived when the form of their solutions are chosen. 

The function F,(t, x) and G,(t, x) will be determined by successive Galerkin projections. First 
substituting (4) into (2), multiplying the resulting equation with sin 2mnz/A, and integrating over 
one wavelength A, we have the the odd mode equation 

+ B [n(m - A ) $ x o ( E i -  1 - N) + 3 Il/,o(Ef- 1 - bI ) D l  Frn - 1 9  ( 5 )  

where E = 8, - ( 2mn/A)2, N = M2 - (27~)~, D = a, and m varies from 1 to M + 1. 
Similarly, the Galerkin projection with the even Fourier component cos [ 2(m - l ) z z ] / l  yields 

8,- - E i - l  E i - l + E % - l D  G m = B [ ~ ~ ~ o D - ( m + A - l ) n ~ ~ o ] ( E ~ + A ~ l - N ) G m + A  

+ B [$ +(m - A - 1)7r&,0](E;-A- - N)G,-A. 

i[ (9 1 1 
(6) 

Hence, the amplitudes of odd and even Fourier modes ( F ,  and G,) are decoupled, as they are 
governed independently by (5) and (6), respectively. 

3.2. A new approach in the x-direction: rational Chebyshev mode 

The problem with an unbounded domain is a difficult one computationally. One of many 
difficulties is the lack of a well-behaved base function. Continuing with the earlier work by Orszag 
and Boyd, Boyd32 recently defined a new spectral basis, the ‘rational Chebyshev functions on the 
semi-infinite interval’, which is related to the Chebyshev polynomial by a mapping. It is shown 
that these rational functions inherit most of the good numerical characteristics of the Chebyshev 
polynomials: orthogonality, completeness, exponential of ‘infinite order’ convergence, matrix 
sparsity for equations with polynomial coefficients and simplicity, which provides a far better 
behaved basis function for spectral method in semi-infinite domain than the Laguree function. In 
the present work, since we have a semi-infinite domain in x-direction, we are using the new 
functions as basis functions in x-direction. 

The amplitude of each Fourier component will be expanded in series of the rational Chebyshev 
function TLk: 

The new basis function, i%k(x), x ~ ( 0 ,  co) is defined by 

F ,  = Ak(t)T&(x). 

TLk(X) E Tk( 5 )  COS (ke), 

where Tk(t;) is the ordinary Chebyshev function, and the three co-ordinates are related by 

x =(1+ 5)/(l- t;), 
x E cot2(8/2), 

t; =(x - l)/(x + l), 
8 = 2arccot(Jx). 

(7) 
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It is easily verified that the rational Chebyshev function has the following orthogonality 
property with weighting function 1/[(x + 1 ) ~ ' / ~ ]  

n, m=n=O, 

7112, m=n>O. 
=I, m # n  

To obtain a system of ordinary differential equations for Ak,(t), we first substitute (7) into (9, 

(8) 

and obtain 

L m l  (Ak,(t)TLk(X)) =BR[LmZ(Ak,- 1 ( t )  TLk(x)) + Lrn3(Ak+ 1 TLk(x))], 

iml =(Rd,--E:)E:+ RE:D, 

L~~ = n(m -A) t ,Fxo(~:-  - M ) + ~ I J ~ , , ( E ~ -  - MID, 

L~~ = - n(m + A)t,Fxo(~:+ - M ) + f t,Fzo(~;+ - MID. 

The x-dependence in (8) can be eliminated by the Galerkin projection of (8) onto TL, with the 

where 

above-mentioned weight function 

j: eq.(8).( TL,) (x) w ( x )  dx = 0, 

where 1 is from 0 to K.  The projection yields the system for the odd mode, 

where the upper dot denotes time differentiation, and 

The above integrals can be reduced to definite integrals between 6 = 0 and 6 = n, by use of the 

For any given rn, the coefficients of Ak, in (9) are ( M  + 1) by ( K  + 1) matrices. Hence, operating 
transformation mentioned above. 

both sides of (9) with the inverse of i i m k ,  for each integer m in 1 < m < M ,  we have 

where 
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Thus, (10) is a system of ( M +  1) ( K +  1) equations in which ( M +  1)(K+ 1) are unknowns. 
However, there are additional 3(M + 1) equations which arise from the boundary conditions 
needed to be satisfied: 

By use of the following relations: 

we have the following equations for boundary conditions for u at x = 0, 

and for ux= cc 

and for w at x = 0 

K 1 (-l)kAAk,=O, 
k = O  

X 1 k2(-1)kAk=O, 
k = O  

for each l < m < M + l .  The condition w = O  at x=cc is automatically satisfied because of 
dTLk/dxl,=, =O. Hence, we have ( M +  l)(K+ 1)+3(M+ 1) equations from (lOH13) with only 
( M  + 1)(K + 1) unknowns. To render the above system determinate, we adopt a Tau method3 by 
replacing the last three equations in (10) with (llH13) for each rn. That is to say, we form the 
Galerkin projection in the flow direction only up to [(K+l)-3)]. So, we have 
( M +  l)[(K+1)-3)]+3(M+ l )= (M+l ) (K+l )  equations in (M+l)(K+l) .  Readers are refer- 
red to Chen34 for more detail and general systematical use of Tau method to deal with boundary 
conditions in spectral Galerkin method. 

The final system of ODE can be written as 

CfI=CEl CVl, (14) 

where the upper dot denotes differentiation with respect to time and 
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q ( M +  1)kl r ( M +  1)kl  

where 

. . .  q m K O  

. . . q m K l  

. . .  rmKO 

. . .  r m K  1 

. . .  rmK(K - 3 )  

. . .  (- 

. . .  1 

. . . K * ( - l ) K  1 

q m O ( K - 3 )  q m l ( K - 3 )  . . . q m K ( K  - 3 )  

0 0 . . .  0 
0 0 . . .  0 
0 0 . . .  0 .  

equation (14) with a set of initial conditions constitutes an initial value problem for the evolution 
of the disturbances. 

Similarly, the governing equation of the initial value problem for the even mode disturbances is 
found to be 

where 

and the submatrices in [El has similar structure as in [ E l .  

!3l=CJQ CUl, (15) 

k [ U I T = ( B : , B ; ,  . . . , Bme1,  Bk,, . . . , B k ,  B k + 1 )  

The overstructure of projection by using the spectral method is shown in Table I. 
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Table I. Overstructure of Galerkin projection 

i 
Even-rational Chebyshev mode 

1 
Odd-rational Chebyshev mode 

1 I 
3.3. Numerical method 

The salient features of our numerical procedures are briefly outlined here. More detail can be 
found in Chen.34 By using the spectral Galerkin method in space twice, we reduce the governing 
equations of stability for the two independent modes into a system of ordinary differential 
equations in time. The problem becomes an initial value problem which is solved with appropri- 
ate initial conditions. The key of the formulation is to assure the correctness of formulation of the 
matrix and its submatrices with elements consisting of integrals. First the integrals involved in the 
matrices (14) and (15) are evaluated by the use of the Gauss quadrature, after the integration 
limits are transformed to 0 and as explained earlier. The transformation of integrals are verified 
by Mathematica. The system of ODE given by (14) and (15) are solved by the use of ODEPACK 
provided at Cornell Theory Center. The number of terms retained in the orthogonal expansions 
are systematically increased until the desired accuracy is attained. For most of our computation, 
M =  10 and K=20 are sufficient to guarantee the following criterion 

where E is chosen to be 0.0001 in all of the computation. Self-consistent test is conducted by letting 
B = 0 for Kovaznay flow, we found the flow to be stable as expected. The code used here is similar 
to the one used in the study on stability of the Taylor vortex array.35 One of the crucial tests of 
our code is to show monotonic decay of disturbance of Taylor vortex array at a parameter given 
by Lin and Tobak in energy stability of Taylor vortex array. 
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4. RESULTS AND DISCUSSION 

Flow in laminar and turbulent wakes has been one of the leading problems in fluid mechanics and 
aerodynamics. A comprehensive experimental study can be found in Perry and Steiner36 and 
direct numerical simulation by use of spectral element method is reported by Karniadakis and 
Triantaflyllou. l 6  As Kovasznay mentioned, Kovasznay flow can be described as wake flow in the 
region x > 0 behind a grid of wires. We can also imagine it as the flow passing an array of cylinders 
standing in the z-direction, while radius of cylinders are idealized like a mass particle in physics. 

For full non-parallel flow stability theory, only a few of global stability analyses appear. To the 
author’s knowledge, a general local stability analysis of genuine non-parallel flows has not yet 
appeared. An initial value problem approach to the Kovasznay flow gives us a chance to 
investigate the general local stability theory of genuine non-parallel flows. There are two 
parameters in Kovasznay flow: Reynolds number R and the flow parameter B which decides the 
length of wake flow. For Kovasznay flow, we would like to find at which [w and B, the flow 
becomes unstable and what is next for the subsequent development for the flow. 

4.1. Odd-rational Chebyshev mode 

Figure 2 gives the time evolution of the disturbance with the initial state of odd mode 
prescribed by wavelength A, amplitudes A :  =O.Ol and A: = -0.01 with the rest of Ak, being zero. 
The basic state parameters are R = 100 and B =  5. The spatial position chosen to observe the 
temporal evolution is x = 1/4 and z = 1/4. For this particular set of values of (R, B),  the disturb- 
ance grows monotonically. This figure also serves to demonstrate the convergence of the method 

-3 -z 000 0 5? 005 0 I0 0 15 0 20 

t 

Figure 2. Convergence test. Odd-rational Chebyshev mode for R= 100, B = 5 ,  A:(0)=0.01, A:(0)=0.01. A:(O)= -0.01, 
at x=z=1/4, 1=1 
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Figure 3. Stable odd-rational Chebyshev mode R=40, B =  100, A:(0)=001, A:(O}= -0.01, x=z=1/4, 1 = 1  

of solution formulated in the previous section. Only three curves corresponding to three different 
numbers of terms retained are given in this figure for demonstration. Figure 3 shows that the 
disturbances decay and reach the equilibrium state at [w =40 and B= 100. The flow keeps its 
original state in Figure 1. 

When R=45 and B=25, disturbances fluctuate with respect to time. When we increase B to 
27.8, a wave pack propagation phenomena appears (Figure 4). Disturbances grow in such a way 
that a group of the so-called Carrier plane waves appear which are enclosed by a slowly varying 
envelope. Each envelope is bigger than the previous one and the flow becomes unstable. For 
R = 45 and B = 28, disturbances oscillate and their envelope grows steadily with time (Figure 5). 
For aB = 45 and B = 30, wave pack propagation phenomena appear again (Figure 6).  It is shown 
that, for a Reynolds number R, there is a corresponding critical B at which disturbances start to 
grow and the flow becomes unstable. It is found that the larger the Reynolds number, the smaller 
the critical B becomes. The solution of the initial value problem described above yields a critical 
curve (Figure 7), in the R-B plane, above which the flow is necessarily unstable with respect to the 
given initial disturbance. The flow is stable below the curve with respect to the same initial 
disturbance. 

By using the energy method, Lin and Tobak' give a sufficient condition of global stability in 
the R-B plane for Kovasznay flow. Their global bound curve is shown in Figure 8, with the 
critical curve obtained in the odd-rational Chebyshev mode here (note the log scale in vertical 
direction). Comparing the global stability results and the local stability results, we can see the 
conservative of the energy method with respect to odd-rational Chebyshev mode. However, there 
will be a better agreement for the even-rational Chebyshev mode described in the next section. 



742 H. B. CHEN 

O 

I I I I I I I 

2 3 4 5 U 7 8 0 1 

t 

Figure 4. Oscillatory instability of odd-rational Chebyshev mode for R=45, B=27.8, A:(0)=0.01, A:(O)= -0.01, 
x=z=1/4,  A = 1  
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Figure 5. Oscillatory instability of odd-rational Chebyshev mode for R=45, B=28,  A:(0)=0.01, A:(O)= -0.01, 
x=z=1 /4 ,1=1  
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Figure 6. Oscillatory instability of odd-rational Chebyshev mode for R=45, 8=30, A:(0)=0.01, A:(O)= -0.01, at 
x=z=1/4, 1 = 1  

40 

B 

Figure 7. Critical curve of odd-rational Chebyshev mode for A:(0)=0.01, A:(O)= -0.01, at x=z=1/4, 1= 1 
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Figure 8. Comparison of local instability and global instability: - critical curve of odd-rational Chebyshev mode; 
__bound of energy instability 

From the contour plot of the perturbated flow ($+ $), we can vividly see how the flow becomes 
unstable through the vortex motion. For R = 45 and B = 27.8 (Figure 9a-f), disturbances start to 
affect the basic flow at t = 2.5. The stagnation points stretch first along the flow direction, and 
points continuously stretch until 'bubbles' appear downstream along the line of symmetry. As 
time goes on the bubbles, which are the vortex eddies, become progressively larger ( t= 10.4, 
Figure 9a) until t= 11.6 (Figure 9b). The stagnation points are compressed by the flow from 
downstream. Moreover, big eddies become small eddies, and small eddies become smaller and 
smaller until they disappear. More bubbles appear elsewhere ( t=  11.6). As time goes on, the 
eddies grow larger ( t  = 126, Figure 9c) until t = 13.8 (Figure 9d), the bigger eddies become small 
eddies again (Figure 9d). The smaller eddies will break further into point eddies and eddies 
elsewhere will grow until at certain stage, they will become small eddies (Figure 9e). The whole 
process consists of stagnation point oscillation stretched and compressed. The oscillation sustains 
throughout the process of big eddies becoming small eddies (large scale becomes small scale). 

Figure 10a-d show the streamline pattern for R = 45 and B = 30. The flow becomes unstable 
starting from the stagnation point which is compressed by the downstream (Figure 10a). The 
stagnation points stretch toward downstream and the eddies start to appear (Figure lob). The 
eddies grow as the flow oscillates along the horizontal line at t = 2.4 eddies become bigger and the 
stagnation is compressed (Figure 1Oc). At t= 3.0 (Figure 10d), symmetrical vortex sheet forms and 
the flow arrives at a new flow structure. The onset of instability occurs through the oscillation of 
the stagnation point, from then on, the oscillation grows in time and spreads in space, eventually 
transitioning to the symmetric vortex street. 

For R = 50 and B = 100 (Figures 1 la-1), we can see from the streamline pattern that the flow 
becomes unstable starting from the stagnation points. As time goes on, more eddies are formed 
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Figure 9. Streamline pattern of odd-rational Chebyshev mode for R=45, B=27.8; (a) t =  10.4; (b)  t=  11.6; (c) t =  12.6; 
(d)t=13,8;(e) t=14.4;(f)t=15.0andO<x<25 

( 4  

Figure 10. Streamline pattern of odd-rational Chebyshev mode for R=45, B=30, at (a) t=1.2; (b) t =  1.8; (c) t=2.4; 
(d) t z 3 . 0  and O<x<25 
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Figure 11. Streamline pattern of odd-rational Chebyshev mode for R = 50, B = 10, (a) t= 8.4; (b) t = 9.2; (c) t = 10.4; 
(d) t =  12.4; (e) t =  13.2; ( f )  t= 15.2; (8)  t=  16.4; (h) t= 17.2; (i) t =  18.4; (j) t= 19.2; (k) t=  19.6; (1) t=20.0 and O<x<25 
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Figure 12. Streamline pattern of odd-rational Chebyshev mode for R= 100, B = 5 ,  (a) t=008;  (b) t=0.12; (c) t=0.13; 
(d) t=0.14; (e) t=0.15; ( f )  t=0.16 and O<x<25 

along the downstream (Figure I l k )  when they oscillate back and forth. This phenomenon is 
also observed by FerrC and Giralt37 (Figures 10, 13,14) who extract footprints of organized 
structures within a pattern recognition framework. At t = 16.4, big eddies start to break into small 
eddies (Figure 1 If) and the eddies grow until they form a new configuration pattern: symmetrical 
vortex sheets. A fish-eye phenomenon is shown in Figure ll(1) in which we could imagine fish 
moving towards the upstream. 

For R= 100 and B = 5  (Figures 12a-f), instead of the onset of instability happening at the 
stagnation points, the flow first becomes unstable downstream. It is found that the stagnation 
points are more stable when R= 100 than in the case where R= 50. The outer configuration 
boundary of the attached eddies (like a half Rankine ovoid in aerodynamics) seems to be more stiff 
(Figures 12a and 12b). The small eddies are produced within the region of attached eddies without 
breaking the stagnation points (Figures 12c and 12d). As time goes on, inside eddies oscillate to 
break down the outer boundary of the attached eddies (Rankine body) at t =014 (Figure 12e). In 
the whole process, the vortex motion dominates the flow field. The flow becomes a new 
configuration, a symmetrical vortex sheet structure exists behind each Rankine ovoid before 
turbulence develops. 

It is found that longer the wavelength, the more unstable the flow will be. For R = 45, B = 27.7, 
we can see that disturbances oscillate and grow gradually for wavelength A = 1 (Figures 9a-e). 
When we increase I from 1 to 2, we can see that disturbances grow very fast (Figure 13) and the 
flow becomes unstable earlier than the case when 1 = 1. The flow pattern for R = 45, B = 27.8, A = 2 
can be seen in Figures (14a+). Unlike the case for I = 1  at which if one stagnation point is 
compressed, the next one is also compressed and if one is stretched, the next one is also stretched 
(Figure 9a) at the same time. For A = 2, as we can see in Figures 14a-c, while one stagnation point 
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Figure 14. Streamline pattern of odd-rational Chebyshev mode for 1=2, R=45, B=27.8,  (a) t=0.45; (b) t=0.495; 
(c) r=0,6; (d) t=0.7; (e) t=0.8; ( f )  t=1.0 and O<x,<25 
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is compressed, the next one is stretched. The attached eddies whose stagnation point is com- 
pressed, are compressed by the neighbouring attached eddies in the z-direction. The wavelength 
effects accelerate the interaction of eddies in the z-direction. The stagnation points finally 
disappeared as time went on under the effects of the wavelength. It is concluded that stagnation 
points are the most unstable locations if the wavelength is greater than 1. 

4.2. Even-rational Chebyshev mode 

Carrying the inner products of the governing equation with an even function in the z-direction 
and the rational Chebyshev function in the x-direction, we have the even-rational Chebyshev 
mode. Following a similar process to what we have done in the odd-rational Chebyshev mode, 
we have found the critical curve and streamline patterns for even-rational Chebyshev mode. 

It is found that the flow becomes more unstable corresponding to the lower Reynolds number 
and B in the even-rational Chebyshev mode than that in the odd-rational Chebyshev mode as 
can be seen in the critical curve in Figure 15. The results obtained here are more closed to the 
global stability results than odd-rational Chebyshev mode. So the even-rational Chebyshev 
mode which is corresponding to antisymmetric disturbances is more unstable than the 
odd-rational Chebyshev mode which is corresponding to symmetric disturbances. The reason is 
that the basic flow has an odd function structure in the z-direction. 

By comparing the critical curve with the global results, it is shown that the critical curve of the 
even-rational Chebyshev mode is much closer to the global bound given by Lin and Tobak than 
that of the odd-rational Chebyshev mode (we do not need a log scale in vertical axis). 
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Unlike the odd-rational Chebyshev mode in which the flow pattern has a symmetric vortex 
structure, the even-rational Chebyshev mode has formed an unsymmetrical vortex sheet config- 
uration: Karman vortex street. By studying the flow passing a cylinder, Von Kirman discovered 
that the wake behind the cylinder becomes unstable in such a way that oscillations in the wake 
grow in amplitude and, finally, roll up into discrete, unsymmetrical vortices with a very regular 
spacing. This trail of vortices in the wake is known as the Karman vortex strect. 

It is shown that the Kovasznay flow possesses the Karman vortex street phenomena when 
subjected to the even-rational Chebyshev mode perturbation. For R= 7 and B=0.4, Figures 
(16a-f), the length of the attached eddies is much smaller here than the case of bigger R and 
B ( 2  = 0.2496). So we enlarge the bounded eddies region for 0 < x < 2. We can see that symmetrical 
attached eddies become unsymmetrical attached eddies (Figure 16c). At t = 4.0, the flow starts to 
oscillate behind each attached eddy. To observe further downstream of the wake in the Kovas- 
may flow, we plot the flow field for O<x <25 (Figures 17a-f). As time goes on, oscillations in the 
Kovasznay flow grow in amplitude and gradually roll up into unsymmetrical vortices. The vortex 
sheet forms closer to the upstream. As one goes further downstream, the vortex sheets develop 
spatially (Figure 17f). Further downstream, the formed vortex is bigger than the one upstream. 
The vortices become stronger and stronger and become a new flow pattern before turbulence 
develops. Moreover, the Kovasznay flow possesses many vortex sheets periodically in the 
z-direction, as the characteristic of the basic flow. Similar phenomena can be found for R = 10 and 
B=0.25 in Figures 18a-f. 

Figure 16. Streamline pattern of even-rational Chebyshev mode for O<x<2, I =  1 ,  R=7,  R=0.4, at (a) t=0.0; 
(b) t = 0.8; ic) t = 3.2; (d) t 7 4.0; (e) t = 4.5; ( f )  t = 6.0 
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Figure 17. Streamline pattern ol even-ratlonal Chebyshev mode for O<x<25, 1=1, R=7, B=0.4, at (a) f=3.6; 
(b) t = 3 9; (c) t = 4.2; (d) f = 4.5; (e) t = 5.1; (f) t = 6.0 

Figure 18. Streamline pattern of even-rational Chebyshev mode for O$x<25, l.=l, iW=lO, B=025, at (a) t=6.0; 
(b) t=9.6; (c) t=10-5; (d) t=10-8; (e)  t=11.4; ( f )  r=12.0 
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5. CONCLUSIONS 

The Kovasznay flow becomes unstable and the flow develops into new configuration patterns: 
symmetrical vortex street and unsymmetrical vortex street which resembles Karman vortex 
street. While oscillation motions sustain through vortex birth and break down in certain 
parameters in odd Fourier mode, monotonic growth of the disturbance is shown in even Fourier 
mode which corresponds to antisymmetric disturbances. 

The Kovasznay flow is found to be more unstable with respect to the even Fourier mode of the 
perturbation stream function. This explains why the Karman vortex street is observed in the 
experiment instead of symmetrical vortex street. The advantage of linear theory is the decoupling 
of the odd mode and even mode. The present work is limited by the fact that theory is linear. 
Nevertheless, it is hoped that the stretching of the linear theory will allow us to gain some physical 
insights into non-parallel stability. However, as Herbert2 remarked, the extension of the stability 
theory of parallel flow could be realized either by non-parallelism or by non-linearity, but not 
both. The present study attacked one of the two important aspects: non-parallelism. Non- 
linearity will lead us to a turbulence region instead of onset of instability, which is the main task of 
the linear stability. The coherent structure and chaotic state of the flow can be pursued by 
a dynamic system study. The dynamic system for Kovasznay flow can be obtained by adding 
non-linear terms corresponding to the convective acceleration terms in Navier-Stokes equations 
and forms a similar system to (14). Based on this system, one may investigate the large time 
evolution of unstable Kovasznay flow and extract information concerning the possible coherent 
chaotic structure in the wake. 

Through the course of the investigation, on the basis of the existing evidence, we have found 
several general characteristics of the non-parallel flow stability. 

Vortex motion. Vortex birth, growth and merger play a key role in the non-parallel flow 
instability. Onset of instability accompanies the birth of vorticity. Vorticity exists before turbu- 
lence develops. 

N o  normal mode approach (both spatial and temporal). For Kovasznay flow, non-parallelism 
and unbounded domain prevents us from finding unique eigenvalues, both spatial and temporal. 
This is concluded based on our investigation as well as the existing evidence. Consequently, no 
traditional neutral curve exists in the non-parallel flow. Moreover, terms like absolute and 
convective stability are avoided due to this characteristic. Since we do not have spatial eigen- 
values and temporal eigenmodes to distinguish the definition initiated by plasma physicist. 

Experiment propose. No experiment for Kovasznay flow appeared so far based on author’s 
knowledge. It will be a very good physical mode to do the experiment. Since the basic state is an 
exact solution of Navier-Stokes equation, experimentalists are invited to do the experiment in 
order to get more physical insight of full non-parallel flows. 
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